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This brief report provides an account of varying interpretations of elasticity (1) in the operant demand
framework. General references to “demand elasticity” have existed since the Exponential model of
operant demand was proposed by Hursh and Silberberg (2008). This term has been used interchange-
ably with Essential Value (EV), Pyx, and the rate of change constant a. This report provides an in-
depth account of 7 and the various ways in which this metric has been used to interpret fitted demand
functions. A review of relevant mathematic terms, operations associated with differentiating parameters,
and worked solutions for # are provided for linear and nonlinear demand functions. The relations
between 5 and EV, Py, and a are described and explained in terms of their mathematical bases and
recommendations are provided regarding their individual interpretation. This report concludes with
recommendations for providing additional mathematical detail in published works and emphasizing a

consistent use of terms when describing aspects of operant demand.
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The operant demand framework is increas-
ingly used to evaluate relationships between
reinforcers and the factors associated with their
consumption (GonzalezRoz et al, 2019;
Hursh, 2000; Hursh & Roma, 2016; Kagel &
Battalio, 1980; Strickland et al., 2020; Tidey
et al,, 2016; Zvorsky et al., 2019). Although the
economic concept of demand has long existed
within mainstream behavioral economics, the
operant demand framework reviewed here is
specific to an ecologically based perspective
regarding human and nonhuman behavior,
that is, reinforcer pathology rather than cogni-
tive biases (Bickel et al., 2011). Specifically, the
reinforcer pathology perspective holds that vari-
ous forms of suboptimal choice are jointly
driven by excessive valuations of particular rein-
forcers and a relative preference for immediate
delivery of reinforcers, despite undesirable
long-term effects (Bickel et al., 2014).

This approach and perspective have been
applied broadly, with established utility in
indexing substance abuse and misuse (Kaplan,
Foster, et al., 2018; MacKillop et al., 2018) and
the abuse liability for drugs (MacKillop
etal., 2019; Strickland et al., 2020). Apart from
substance use, this approach has also been
used to evaluate how various forms of socially
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desirable behavior are affected by varying
prices or levels of effort, for example, purchas-
ing groceries (Foxall et al., 2010), “green” con-
sumerism (Kaplan, Gelino, & Reed, 2018),
and evaluating reinforcers in behavioral treat-
ments (Gilroy et al., 2018).

The earliest applications of the operant
demand framework emerged from reanalyses
of experimental nonhuman research. Among
the early researchers evaluating these principles
from an ecological perspective, Lea (1978) pro-
vided an account of price elasticitY of demand
(n) in behavioral experiments.” Briefly, #
(Greek letter eta; elasticity) is an expression of
the relationship between changes in prices (P)
and subsequent changes in consumption (Q)
and 7 can be described in terms of inelastic, elas-
tic, or unit elastic change. Quoting Lea (1978)
on elasticity, “In an economic demand curve,
elasticity of —1 means expenditure on the com-
modity is unaffected by price, whereas elasticity
of absolute value less (more) than one means
expenditure rises (falls) when price increases”
(pg. 447). For convenience, n is illustrated
across a range of inelastic, elastic, or unit elastic
prices in Figure 1. Here, the lefthand plot
shows a fitted demand curve and the right-
hand plot illustrates the overall responding

Tt warrants noting that multiple forms of 5 exist, for
example, demand, income. For the sake of this short
report 7 will refer to price elasticity of demand, specifi-
cally, which may also be denoted as 7, or #p.
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Figure 1
Different Levels of Elasticity Across Prices
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Note. The left plot illustrates inelastic 7 < 1, elastic # > 1, and unit elastic # = 1 demand and the right plot illustrate how inelastic
demand is associated with increases in responding while the elastic range is associated with decreases in responding. [Color fig-

ure can be viewed atwileyonlinelibrary.com]

across prices. As noted by Lea (1978), prices in
the inelastic range are associated with rising
expenditure (i.e., increased responding) while
prices in the elastic range are associated with
decreasing expenditure. The P at which
responding is at maximum is referred to as
Pyiax (Hursh et al., 1987).

Although differential sensitivity to prices
can be inferred visually (i.e., the peak of work
output function), n has a specific mathemati-
cal basis and derivation. Within the rapid
growth of the operant demand framework,
some researchers have described 7 as a con-
cept without presenting the specific mathe-
matical basis for it and this has led to varying
interpretations of z. For instance, it is our
experience that some researchers erroneously
presume individual rate parameters (e.g., @)
or formulations of Essential Value (EV) are
synonymous with # because, visually, each
speaks to variability in how change is
expressed in a curve. That is, higher a values
are related to a greater sensitivity to price
while lower a values are related to lesser sensi-
tivity to price. Although several aspects of
demand curve modeling speak to “sensitivity
of price”, referring to these all as “elasticity
of demand” is not tenable because each of
these measures represents a unique aspect of
a demand function. The purpose of this
report is to address each of the terms loosely

referred to as “elasticity of demand” and to pro-
vide the mathematical basis for each and how
they each relate to the operant demand
framework.

Mathematical Terms

Demand Function

When we speak of demand, we refer to the
degree to which some individual or organism
will work to defend the bliss point consump-
tion of a reinforcer. A demand function refers
to some model or representation of the
predicted level of demand for some
reinforcer(s) as a function of one or more fac-
tors, for example, price, availability of alterna-
tives. Although contemporary approaches in
operant demand use nonlinear models to rep-
resent the demand function, see Hursh and
Silberberg (2008) for a contemporary exam-
ple, it warrants noting that most economists
typically use linear models because multiple
regression models can accommodate numer-
ous variables apart from price alone
(e.g., income, availability of substitutes). In lin-
ear models, # exists as a singular value and is
either elastic, inelastic, or unit elastic (but
remains the same across prices). Regardless of
model, common terms used in demand func-
tions include the number of goods consumed
(Q) and price (P) per unit of consumption,
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Figure 2
A Linear Demand Function Plotted in Log—Log Scales with a
Constant n of —10.5
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that is, unit price. For convenience, an exam-
ple of a linear demand function representing
Q as a function of P is illustrated in Figure 2.

Derivative

In the most basic sense, the derivative of a
function speaks to the rate of change in a
function, for example, f(x), a given point, that
is, at x. Abstracting this to a demand function,
the derivative speaks to the degree of change
observed for a function, f{x), per unit increase
in x (Allen, 1938). This description is general
because the derivative of a function can be
expressed in several ways. In the most basic
form, the derivative can be approximated via a
secant line between two points along the curve
(see Equation 1).

gz f(X2) _f(Xl) (1)
AX Xo—X4

The ratio here shown above is a division of
the degree of change in the function, AY, by
the degree of change in x, that is, AX As
shown in Figure 3, as the value of AX
approaches 0 the resulting slope converges to
the instantaneous rate of change for the func-
tion (i.e., at x).

Although secant approximations provide a
general estimate of the slope at a point
(i.e., X7), such estimates are not well suited to
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Figure 3
The Secant Line Approximations of Change in F(x) as a Func-
tion of Ax

Secant Line Slope as Function of AX
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Note. This estimate of the change in a function becomes
increasingly exact as Ax approaches the limit.

nonlinear functions (e.g., “S”shaped curves)
because these estimates inherently presume
linear slope even when functions are
nonlinear. Alternatively, the more appropriate
approach in these cases is to solve for the
instantaneous rate of change at a given point
(i.e., the slope of tangent line). In this situa-
tion, the derivative is presented as follows in
Equation 2:

df_ d _ gl 1
e T (x)=/(x)=) =lim %

Although analogous to the slope, it is neces-
sary to explain the role of the limit in this
method of the derivative. The limit here
speaks to the lowest, most precise value of 4X
as h approaches zero. One cannot simply use
zero here because division by zero is
undefined. As an alternative to numerically
estimating / using the terms here, terms may
be differentiated such that . drops out of the
solution. However, we note certain functions
may not have a derivative while others could
have many (i.e., different derivatives for differ-
ent points). Regardless, if a limit exists for a
function then that function can be differenti-
ated and differentiation with respect to x for f
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(x) yields the instantaneous rate of change for
that function at x. This is the most commonly
used approach because most functions can be
differentiated. Prior to elaborating further, we
note here that the notation of the derivative
varies across fields and applications, with the
Lagrange notation representing the (first)
derivative as f’ (x) and the Leibniz notation as

% or Lf(x). As a matter of preference, the

dx.
Leibniz notation will be used throughout this
report.

Derivatives have thus far been reviewed as if
the demand function took only a single factor
(i.e., fwas only as a function of x). Although
studies of operant demand typically focus on
demand as a function of P, economic research
is rarely focused solely on P and demand is
often modeled wusing several factors
(e.g., price, income, and availability of substi-
tutes). In these cases, differentiation per-
formed with respect to a single parameter
(e.g. x) alone would be considered a partial
derivative because this would express rates of
change as a function of that parameter, with
all others held constant. The notation of the
partial derivative differs from the base deriva-
tive and an example of this is shown below in
Equation 3:

af 9

Ox O (2.0, Qo. k) = [ (%2, Q. k) (3)

In addition to the examples provided
here, further notation is provided in
Appendix A.

Deriving Elasticity, n

The previous sections reviewed two relevant
concepts, demand functions and derivatives.
Clarification of these terms was necessary prior
to discussing # because the (first) derivative of
a function is not necessarily a reflection of #.
That is, n speaks to relative changes between
variables (e.g., Q and P) and there are multi-
ple avenues for elucidating these relationships.
In the interest of completeness, several com-
mon conventions for deriving # are discussed
below.

Parameterized n

As briefly noted earlier, economists often eval-
uate demand using multiple linear regression
and one can directly model # as a fitted
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parameter, assuming # is the same at any given
P. In the simple model provided in Figure 2,
namely, log(Q) = B+ Blog(P), the fitted
parameter f; is a direct representation of 75
because the dual logarithms of P and Q reflect
relative changes (See Appendix B for a fully
worked example). Should one solve for # in this
case using derivatives, the solution ultimately
reduces to f; and f; indicates that a 1% change
in P is associated with a 10.5% decrease in Q.
That is, in this case the parameter $; is a direct
reflection of 5. Regarding the specific fitting in
Figure 2, the conclusion here would be that the
demand for this good is highly (and singularly)
elastic. Although a simple example is included
here, these models are typically expanded to
simultaneously evaluate # with respect to
income, availability of alternative goods, and
other factors that may influence consumption.

Log—Log Differentiation

In contrast to determining 7 via specific
parameters, 7 is often determined through dif-
ferentiation in the context of nonlinear
models. In nonlinear models, the responsive-
ness between P and Q is not constant (i.e., not
static) and # will vary as P changes. For
instance, consider the Linear-Elasticity model
demonstrated in Hursh et al. (1987). In this
model, Hursh and colleagues presented a
nonlinear model of demand as follows in
Equation 4:

log(Q) =log(L) + blog(P) — aP (4)

In this model, L represents the predicted
levels of consumption at a P of 1, 4 is the “ini-
tial downward slope of the demand curve” per
Hursh et al. (1988), and a represents changes
in slope as a function of P. In contrast with the
parameterized approach, where 7 is a constant
value, 1 here is not constant across increasing
values of P. That is,  at a given P could be
potentially  inelastic ~ (n< |1]), elastic
(n> | 1|), or unit elastic (7 = | 1|). This is dis-
tinct from the parameterized approach where
a fixed value for 7 is represented as an individ-
ual constant parameter. Given that this model
is nonlinear, it is logical no individual parame-
ter represents 7 because # is not a single, fixed
value that persists across prices. Ultimately, the
process for deriving # here is via differentia-
tion and the solution for 5 is as follows in
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Equation 5 (see Appendix C for complete
solution):

n=b—aP (5)

The solution here requires differentiating
P with respect to the logarithmic increases in
price, that is, dplog( )= % That is, 7 is not the
first derivative for the Linear-Elasticity model
and changes in P must be expressed as log(P).
Rather, n here is determined using a partial
derivative. When differentiated in log—log
space, the instantaneous rate of change here
reflects a unitless representation of 5 as a func-
tion of variables a, b, and P.

Although the Linear-Elasticity model has
been used extensively in the literature, Hursh
and Silberberg (2008) later presented the
Exponential model of demand. The structure
of the Exponential model is listed below in
Equation 6:

log(Q) =log(Q,) +k(e™*%" 1) (6)

Here, the rate constant « jointly reflects
logarithmic changes in @ in conjunction
with the intercept (Qp) and the span param-
eter (k). In this more recent model, a alone
indexes the rate of change whereas the ear-
lier model jointly represents the rate of
change with two parameters, @ and b. Fur-
ther, the incorporation of @, in the exponent
was included to support the standardiza-
tion of P across reinforcers (Hursh &
Silberberg, 2008). Despite these differences
between models, differentiation here is also
performed with respect to log(P) to evaluate
relative changes in P and Q and the solution
for n in the Exponential model is as follows
in Equation 7 (see Appendix D for complete
solution):

n= _aonPe_aQoP (7)

Linear-Linear Differentiation

Although each of the preceding methods
for deriving # has used logarithms to evaluate
relative changes in P and O, n can also be
derived wusing the linear (natural) scale
(e.g., Koffarnus et al., 2015; Yu et al., 2014).
However, 5 speaks to relative changes between
variables and values of both P and Q in the
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linear scale must be adjusted such that
changes in prices and consumption are rela-
tive (i.e., not absolute). That is, the absolute
changes expressed on the linear scale can be
transformed to reflect percentage changes.
For instance, consider the Exponentiated
model proposed by Koffarnus et al. (2015).
Briefly, this model is a restatement of the
Exponential model proposed by Hursh and
Silberberg (2008) with model terms (i.e., Q)
exponentiated to the linear scale. The struc-
ture of this model is noted below in
Equation 8:

s ,~a Qo P _

Q=0Qy* 107" ®)

The incorporation of Q on the linear scale
has the benefit of accommodating zero con-
sumption values, however, evaluating Q on the
linear scale requires additional steps to ensure
differences are relative. That is, the derivative
of this demand function with respect to P
reflects responsiveness in terms of absolute
changes, or 5. The determination of 17 is indi-
cated below in Equation 9:

;=42 9

AP (9 (Q()’kaP> (9)

The difference between 77 and 7 is that 7 is
unitless and 7 is not. Fortunately, units here
can be negated by multiplying the absolute
responsiveness (n) by the respective P by the
predicted level of Q at given P. This is illus-
trated below in Equation 10 (see Appendix E
for a complete solution).

P

n=n Q

In performing these operations, the abso-
lute changes in P and @ are instead
reflected as percentage change, and thus, a
relative and unitless representation of
responsiveness between two variables. In
working through this example without loga-
rithms, it warrants reiterating that multiple
methods are available for deriving # but
solutions are ultimately specific to the scale
and units used in each instance. Further, it
warrants noting that the exact solution for
unit elasticity proposed in Gilroy et al. (2019)
is robust to scale and unit differences and

(10)
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applies equally to both the Exponential and
Exponentiated models.?

Clarifying 7 in Operant Demand

The preceding sections served to illustrate 5
and how 7 retains a consistent derivation
regardless of model structure, theoretical per-
spective, or specific variables. Despite differen-
tiation serving as the basis for  in demand
functions, the term “demand elasticity” has
emerged in studies of operant demand as a
general reference to the steepness or rapidness
of change in Q as a function of P. Although
both 1 and “demand elasticity” each speak to a
responsiveness of changes in Q to changes in
P, it warrants reiterating # has a specific math-
ematical basis while references to “demand
elasticity” have been used in the context of rel-
atively ranking “steepness” or rates of change
(e.g., high vs. low a). To make this comparison
clearer, we direct the reader to Hursh and
Silberberg (2008) where the authors state
“What is needed is a new equation that main-
tains the predictive successes of the linear-
elasticity equation but addresses the need of
having a single parameter defining changes in
elasticity of demand” (p. 190). Here, we read
and infer that the original intent of Hursh and
Silberberg was to derive a singular parameter
not to reflect n directly but to reflect changes
in 5. That is, higher values of a represent more
rapid changes in Q while lower values would
represent more gradual changes. However,
absent clarification between these, we have
seen repeated instances in the literature
wherein authors seemingly regard a as synony-
mous with 7.

Revisiting the mathematical basis for 7, it is
clear a alone cannot represent  because « is a
fixed value across prices while # is dynamic.
Revisiting Hursh and Silberberg (2008) again,
they stated, “The slope of the demand curve,
elasticity, is jointly determined by k and a, but
because k is a constant, changes in elasticity
are determined by the rate constant, o’
(p- 191). Here, the authors describe a as a
value that indexes change in #, while # is ulti-
mately a product of various terms (see

2We note that the exact solution to Py x is amenable to
both Exponential and Exponentiated models but the two
will naturally provide different estimates when applied to
different sets of data (e.g., with and without zero values).

111

Appendix D for a worked solution). In rev-
isiting this statement, early accounts of a do
not explicitly state that a and 5 are distinct
measures. Barring a more complete and
explicit description of 5, some have presumed
a in this model represents n and this is
not true.

Clarifying Parameter

As noted earlier, @ and 5 are often commu-
nicated interchangeably when referring to
“demand elasticity” in studies of operant
demand. Newman and Ferrario (2020) visited
this issue as well, noting “...elasticity is a well-
defined and useful concept in economics, but
a is not a measure of elasticity. Rather, a is a
measure of the price at which the animal per-
forms maximum work, equivalent to the
quantity Ppuayx” (p. 949). Referring to the
description  provided in  Hursh and
Silberberg (2008), parameter a was originally
described as a measure representing
“changes in elasticity.” The function of «a is
more accurately described as representing
changes in Pypux and this relationship is
made clearer when reviewing the solution
provided in Gilroy et al. (2019). This solu-
tion, shown in Equation 11, solves for Pysx
(1= —1) using the parameters derived from
either the Exponential or Exponentiated
model of operant demand.

1
- WO (_ logl()")
aQ,

Shown here, the omega function (W) is
applied to a transformation of the span param-
eter k and this value is divided by the product
of a and Q) to determine Pp4x. From here, it
is simple to rearrange the terms such that a
similar solution is possible for a as well:

- —_1
Wo ( logl()")

o\ lgl0]) 12
¢ Qo Pyax (12)

(11)

Pryax =

The solutions here highlight how, holding
k and Q) constant, both Py4x and a are per-
fectly and inversely rank ordered with one
another (i.e., larger a, smaller Pyx). That is,
those factors held constant, Py,x and the
inverse of @, 1, will maintain a perfect rank

> q?
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order relationship with one another.” Hursh
and Roma (2013) highlighted this relationship
and noted that this trait of a served as a form
of EV and supported an early approximate of
Pyax in the Exponential model of operant
demand. The original approximation was pos-
sible because a speaks to how rapidly the
demand curve approaches the point of maxi-
mum responding, Pyax. Given the mathemati-
cal link between a and unit elasticity, it is
more appropriate to note that the changes
captured in o are more accurately described
as reflecting changes in Pyux (or maximum
responding) rather than changes in 7 more
broadly.

Clarifying Pyax and Unit Elasticity

When we speak of Pyux, this measure
reflects the P value at which an organism
responds at the highest rates to produce the
reinforcer (i.e., exerts most work). Generally
speaking, i at Pysx is typically —1 in the Expo-
nential and Exponentiated models of demand,
but instances exist wherein P = P,;,x but
n# — 1. As discussed in Gilroy et al. (2019),
no real solutions exist for # = — 1 in situations
where the span parameter k value is below

1.18, i.e. ;5757 Were the units of k the natural
og(10)

log rather than log;o, the lower limit would
be e This limit is logical given that the
demand curve must decrease at least 1 log
unit decrease from @, in response to 1 log
unit increase of P to produce an 5 of —1. That
is, apart from variability in how researchers
prepare this parameter (Kaplan, Foster
et al., 2018), the span constant also has an
unintended effect of limiting # (Newman &
Ferrario, 2020).

In such cases where k is defined below the
limits noted above, a Py indeed exists
(i.e., a price where maximum responding is
observed) but 5 at this point cannot be —1.
Consider the following example: A demand
series is fitted to the Exponential model of
operant demand with three separate k values:
1, 1.5, and 2. Per the solution from Gilroy
et al. (2019), a solution for 7 of —1 exists only
for the k values of 1.5 and 2. Newman and
Ferrario (2020) also noted this limitation and

*We note that parameter k is likely to remain constant
across fitted curves in an experiment; Pyuy is likely to
covary with parameter Q) due to differences associated
with varying dosages.
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provided a mathematical basis for the absolute
lower limit of 5 given k, pax and their solu-
tion is provided below in Equation 13*

k

NMymax = (13)

Returning to our example of demand curves
fitted with varying span constants, the 7,14 x for
each is displayed in respective plots in
Figure 4. Here, we see k sets the lower limit on
the range of n possible across prices. Given
this limitation, the value of the span constant
may unintentionally introduce a situation
where researchers are unaware that it is math-
ematically impossible for n to equal —1. In this
situation, 7 at the observed Ppsx in this situa-
tion would most likely be at or near the nyu.x,
given the span constant because no real solu-
tion exists for # = — 1. In such a situation,
parameter o will continue to speak to a point
of maximum responding but the link between
Pyaxand n = — 1 will be lost.

Future Directions in Operant Demand

The operant demand framework has
enhanced the ability of researchers to evaluate
human and nonhuman responding under a
variety of constraints (e.g., prices, substitutes
available). This framework has rapidly grown
to include a variety of experimental and hypo-
thetical purchase measures (Bickel et al., 2018;
Kaplan, Foster et al., 2018), but several aspects
of this emerging methodology warrant further
refinement and clarification as this framework
continues to expand. Principal among areas to
clarify, # in operant demand has been commu-
nicated in various ways and this detracts from
a consistent interpretation of research findings
across labs and across domains. That is,
although loose references to “demand elastic-
ity” may not alter scientific conclusions within
individual experiments, imprecise references
may lead to miscommunication of # across
studies and disciplines. For example, system-
atic meta-analyses of “demand elasticity” could
theoretically be summaries of EV, a, or Pyx
and potentially never summarize 7. Speaking
of all these metrics interchangeably inevitably

*We note here that the lower limit proposed by New-
man and Ferrario (2020) put k in base units of e. The

logio equivalent would simply replace e with .
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Figure 4
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A Demand Function with the Same Data Fvaluated Using Varying Span Constants
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frustrates a true synthesis of how 5 of demand
for reinforcers varies within and across various
disorders (e.g., alcohol abuse, illegal drug
use). Apart from limiting research synthesis in
the behavioral sciences, loose references to
“demand elasticity” also limits the ability of
researchers to clearly communicate with other
fields where 5 has a clear and precise interpre-
tation (e.g., economics). For these reasons, we
recommend that researchers adopt a common,
more consistent definition of these parameters.
Regarding a, we have found it more accurate
to refer to this as an index of the rate of change
in 7, given the span of the demand curve (k)
and the base level of demand intensity (Qp).
This definition clearly articulates how a relates
to 17 as a function of other parameters (i.e., it is
inversely related to Pysx). Similarly, we have
found it more appropriate to present Pypx as
the predicted or observed P that reflects peak
levels of responding (i.e., maximum output).
This definition is superior to describing Ppax
as unit elasticity because Pyax is an explicit
value of P and because # is restricted in cases
where constant %k exists below the rec-
ommended lower limits (i.e., not always unit
elastic). Lastly, we believe that  is most clearly
defined as the responsiveness of changes in Q to
changes in P. Although general, a broad defini-
tion is warranted because 5 ultimately varies
across P in operant demand and because wunit
elasticity is only one instance of 7.

In addition to clarifying aspects of demand
curve analyses, this report further elaborates

upon the numerous challenges associated with
an explicit span parameter in demand curve
analyses. Namely, issues associated with k and
n present a continued and historical source of
variability in operant demand. Furthermore, it
is unknown to what degree misspecified
kvalues (i.e., below recommended lower limit)
have influenced subsequent syntheses of
behavioral economic works. Looking forward,
the issues with an explicit span parameter nat-
urally prompt a reevaluation of whether an
explicit span parameter supports a consistent
and replicable approach to understanding
response—reinforcer relationships. That is, it
may be necessary to pursue alternative analyti-
cal strategies free from this parameter.
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Elasticity in Operant Demand

Appendix A
Notation of Derivative
af d

) S+ )=/ (x)
dx dx h

(x)=/'(x) = =lim

Notation of Partial Derivative
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Appendix B

Deriving n from Individual Parameters

log(Q) =p, +p11og(P)
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Appendix C

Deriving 7 in the Linear Elasticity model of
Demand
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Appendix D

Deriving 7 in the Exponential model of
Demand

aifj(QO,k,a, P)=—aQgke “w"

d 1
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Appendix E

Casting Absolute Changes in terms of
Unitless Change
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Deriving 1 in the Exponentiated model of
Demand
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